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Abstract The significant biological role of RNA has fur-

ther highlighted the need for improving the accuracy, effi-

ciency and the reach of methods for investigating RNA

structure and function. Nuclear magnetic resonance (NMR)

spectroscopy is vital to furthering the goals of RNA struc-

tural biology because of its distinctive capabilities. However,

the dispersion pattern in the NMR spectra of RNA makes

automated resonance assignment, a key step in NMR

investigation of biomolecules, remarkably challenging.

Herein we present RNA Probabilistic Assignment of Imino

Resonance Shifts (RNA-PAIRS), a method for the auto-

mated assignment of RNA imino resonances with synchro-

nized verification and correction of predicted secondary

structure. RNA-PAIRS represents an advance in modeling

the assignment paradigm because it seeds the probabilistic

network for assignment with experimental NMR data, and

predicted RNA secondary structure, simultaneously and

from the start. Subsequently, RNA-PAIRS sets in motion a

dynamic network that reverberates between predictions and

experimental evidence in order to reconcile and rectify res-

onance assignments and secondary structure information.

The procedure is halted when assignments and base-parings

are deemed to be most consistent with observed crosspeaks.

The current implementation of RNA-PAIRS uses an initial

peak list derived from proton-nitrogen heteronuclear multi-

ple quantum correlation (1H–15N 2D HMQC) and proton–

proton nuclear Overhauser enhancement spectroscopy

(1H–1H 2D NOESY) experiments. We have evaluated the

performance of RNA-PAIRS by using it to analyze NMR

datasets from 26 previously studied RNAs, including a

111-nucleotide complex. For moderately sized RNA mole-

cules, and over a range of comparatively complex structural

motifs, the average assignment accuracy exceeds 90%, while

the average base pair prediction accuracy exceeded 93%.

RNA-PAIRS yielded accurate assignments and base pairings

consistent with imino resonances for a majority of the NMR

resonances, even when the initial predictions are only

modestly accurate. RNA-PAIRS is available as a public web-

server at http://pine.nmrfam.wisc.edu/RNA/.
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Introduction

RNA plays many important roles in gene expression, and

RNA molecules show great promise as drug targets, thera-

peutic agents, and catalysts or recognition units for use in a

variety of biochemical and biomedical applications. The quest

for comprehensive information about structure–function

relationships via high throughput structure elucidation has

thus far focused on protein structures (Fox et al. 2008). Despite
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the biological abundance and functional importance of RNA,

its structure determination has lagged behind that of proteins.

For example, at the time of this writing, the Protein Data Bank

contained[69,000 3-dimensional coordinate sets for proteins

but fewer than 2,100 for RNA molecules. This may be due in

part to the fact that nucleic acids can be challenging targets for

crystallization. Moreover, the hydrogen bond mediated base

pairing that is central to RNA structure may become ambig-

uous at lower X-ray resolutions. The complementary method

of nuclear magnetic resonance (NMR) spectroscopy does not

require crystallization (Davis et al. 2005; Miyazaki et al. 2010;

Nozinovic et al. 2010; Wang et al. 2010). NMR provides

direct observation of atomic connectivity information,

including hydrogen-bonded protons. However, efficient and

automated approaches to address key RNA structure deter-

mination steps remain to be developed. In the resonance

assignment step, a key first step in NMR of RNA biomole-

cules, the dispersion pattern in the NMR spectra of RNA

makes automation remarkably challenging. In contrast to

proteins (Bahrami et al. 2009), there are currently no methods

for automated resonance assignment of RNA.

The structural characteristics of RNA are dominated by

the highly stable and regular A-form helix (Wang et al.

2010). RNA secondary structures can be predicted with

approximately 73% accuracy by dynamic programming

algorithms for the free-energy minimization of empirically

derived, sequence-dependent nearest-neighbor thermody-

namic parameters (Turner rules) (Dimitrov and Zuker 2004;

Mathews et al. 2004; Mathews and Turner 2006; Xia et al.

1998). The accuracy of predictions can be pragmatically

reduced by the tendency for RNA sequences to include

unpaired bulge-, internal-, or hairpin-loop regions for which

no fine-tuned thermodynamic parameters are yet available—

although some attempts at estimation have been made (Ding

and Lawrence 2003; Dirks et al. 2004; Hart et al. 2008; Rivas

and Eddy 1999). For the pseudoknot motif (Giedroc and

Cornish 2009; Theimer et al. 2005), which involves base

pairs between distant loops in a sequence with intervening

helical stems, the computational formulation leads to an NP-

complete problem. Comparative sequence analysis has the

potential for identifying probable secondary structures from

sequence conservation and compensatory mutations that

maintain base pairing (Gutell et al. 2002). However, the

number of sequences required for comparison is proportional

to sequence length, and the influence of variable tertiary and

quaternary interactions on sequence conservation across

species is largely unknown or ignored. Nevertheless, RNA

secondary structure plays an important role in dictating the

resultant tertiary fold, and its accurate determination serves

as an important first step in using NMR to determine the

three-dimensional structures of RNA molecules.

A key initial step in the analysis of RNA NMR data entails

the labeling of atoms with resonance frequencies obtained

from the NMR experiment—the so-called resonance

assignment step. Whereas computational methods for the

prediction of RNA secondary structure from primary struc-

ture have advanced considerably, similar methods for auto-

mating the interpretation of NMR data to obtain resonance

assignments, confirm secondary structure predictions, and

derive tertiary structure restraints in a robust manner have yet

to be developed (Fig. 1a). Current methods for the assign-

ment of NMR resonances of RNA rely almost exclusively on

the manual, time-intensive interpretation of through-space

(\6 Å) nuclear Overhauser enhancement spectroscopy

(NOESY) experiments, which result in ambiguous connec-

tivity information. The more straightforward triple reso-

nance experiments employed in the assignment of protein

backbone resonances (Eghbalnia et al. 2005a; Güntert 2009;

Stratmann et al. 2010) cannot be relied upon for RNA due to

its very different chemistry—for example, intrinsically small

scalar couplings across the phosphodiester bond. Addition-

ally, RNA molecules do not offer the NMR chemical shift

dispersion found in proteins.

We present here a method for the automated assignment

of RNA imino resonances with synchronized verification

and correction of predicted secondary structure. The

approach, named RNA-PAIRS (RNA Probabilistic

Assignment of Imino Resonance Shifts), uses predictive

information about RNA secondary structure to compensate

for potentially incorrect base pairings that can bias the

interpretation of data. The resulting secondary structure

constraints serve as anchor points for the automated

probabilistic assignment of RNA NMR spectra. Through

the analysis of experimental data, we demonstrate that

a priori predictions of secondary structure are sufficient for

accurate resonance assignments and secondary structure

modeling with simple RNA structures. RNA-PAIRS,

which is freely available from a web server, offers a robust

first step toward automating the current time-intensive and

potentially error-prone manual approaches to imino proton

assignments and secondary structure determination. Our

discussion addresses challenges that remain to be addressed

in future refinements and extensions to our algorithm.

Methods

Overall approach

The assignment of imino proton signals and the experi-

mental determination of secondary structure are funda-

mental to RNA structural studies by NMR (Fig. 1a—box

1). Our strategy, which is guided by experience in the field

of RNA NMR spectroscopy, achieves robustness by com-

bining specific knowledge regarding structure–function

relationships of RNA chemical shifts and their
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connectivities with knowledge about structural motifs. For

example, when reliable a priori information about sec-

ondary structure is available, RNA resonance assignments

can be guided by through-space sequential ‘‘walks’’ that

connect 2D 1H–1H NOESY crosspeaks. The imino protons

(H1 of guanosine, H3 of uridine) are centrally located in

the canonical (Watson–Crick) base pairs of RNA (GC and

AU), as well as in the common GU or UU wobble pairs.

Hydrogen bonding prevents the imino protons from rapidly

exchanging with solvent, and results in a shift to higher

frequency of 10–15 ppm. Observation of a NOESY cros-

speak between two imino resonances involved in Watson–

Crick base pairs indicates a stacking between the two base

pairs (Fig. 1b). A crosspeak ‘‘walk’’ among series of

adjacent base pairs provides evidence for the secondary

structure. Fortuitously, imino proton signals are well sep-

arated (at higher frequency) from those of other atom types

in RNA. In addition, the H1 and H3 proton signals from

GC and AU base pairs fall in partially separated regions

(Fig. 1b), and the imino resonances from GU or UU

wobble base pairs are distinguishable by the presence of an

unusually intense NOE crosspeak arising from the close

juxtaposition (\2 Å) of imino protons from these residues.

Residue types can be corroborated by the characteristic

resonance dispersion of imino nitrogens, as observed in 2D
1H–15N heteronuclear multiple quantum coherence

(HMQC) experiments. Finally, the 2D HNN-COSY

experiment directly correlates the NMR signals from

nitrogen atoms involved in base pair hydrogen bonding.

The RNA-PAIRS algorithm starts with an initial sec-

ondary structure model. This model can be determined by

RNA-PAIRS software, which generates it by an adaptation

of free energy minimization algorithms (Xia et al. 1998), or

the user can bypass this step and supply a secondary

structure model as an input. Next, RNA-PAIRS derives

probabilistic assignments of imino proton NMR signals

based on the latest available secondary structure prediction

and the NMR spectra peak lists. The probabilistic reso-

nance assignments derived from this step are then used to

update the probabilities for the current secondary structure.

The algorithm proceeds to a subsequent round of deriving

probabilistic assignments from the newly estimated

Fig. 1 a Standard steps for solving RNA structures using NMR. The

process can be conceptually divided into three main steps: 1 imino

proton assignments and secondary structure validation, 2 full

resonance assignment and restraint list construction, 3 structure

calculation. The vast majority of work in these steps requires manual

intervention—although some automation support is available for

structure calculation and refinement. Circular arrows indicate some

of the possible steps for iterative refinement while the dotted arrow
suggests the potential need for construct modifications. Imino regions

of 2D NOESY and HMQC NMR spectra are often highly informative

for step 1. b Two types of NMR spectra containing information

relevant for assigning NMR signals for imino protons and nitrogens in

an RNA molecule (BMRB ID 17921)
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secondary structure. The iteration continues until conver-

gence is achieved to a final consistent set of probabilistic

imino assignments and RNA secondary structure (Fig. 2).

Initial secondary structure prediction estimate

from sequence

RNA secondary structure prediction is a mature field and

several tools are available (Zuker 2003; Hofacker 2003;

Gruber et al. 2008; Andronescu et al. 2003; Knudsen and

Hein 2003; Sato et al. 2009; Ying et al. 2004; Clote 2005).

In RNA-PAIRS, because the ultimate prediction of sec-

ondary structure is strongly influenced by experimental

data, our aim in establishing an initial secondary structure

prediction is to obtain a broad range of possible secondary

structures as ‘‘starting points’’. The starting secondary

structure pool for the algorithm has to satisfy the compet-

ing goals of: (a) lowering the likelihood of missing a

potential pairing, and (b) not producing an unwieldy and

unreliable pool of secondary structures. To achieve these

goals, we build on existing approaches by incorporating

two observations that motivate our construction. It has been

recently demonstrated that the structural effect of certain

localized mutations in RNA can be well represented by a

power-law distribution that is sharply centered at a specific

secondary structure state (Stich et al. 2010). Earlier work

has shown that, among RNAs with the same length and

compositional frequency, the native sequence is the more

stable form (Le et al. 1990). More colloquially, RNA

sequences change during evolution, but RNA structures,

including RNA secondary structures, are generally con-

served strongly (power-law distribution) in order to

preserve function. We use these observations to test the

stability of the predicted secondary structure by artificially

introducing specific mutations in the sequence and re-pre-

dicting the secondary structure of the mutated sequence.

The impact of mutations on the predicted secondary

structure is used to assign probabilities (scores) to indicate

the stability of base pairs potential diversity of base

pairings.

In the minimum free energy landscape, base paired

nucleotides provide a strong stabilizing force in RNA

secondary structure formation. We would envisage that

sequence mutations in regions sufficiently far from pre-

dicted base paired nucleotides are therefore less likely to

lead to secondary structure changes. However, if the

(computational) energy landscape near the predicted min-

imum is rugged, or mutations in loops cause large (desta-

bilizing) energetic changes, then changes to predicted

secondary structure are likely to occur. By restricting our

computational mutations to the internal sections of larger

loops ([2 nt away from base paired nucleotides), the

energetic impact of the latter condition is likely to be

diminished because larger loops ([5 nt) have near constant

energy contributions of the order 6 kcal/mole (Zuker;

Hofacker); which for most typical loops does not increase

significantly with the length of the loop beyond 6 nt.

Therefore, in a pool of randomly mutated sequences, a

significant portion should yield relatively small energetic

changes—small energy perturbations. Recalculating the

secondary structure in the ‘‘energy-perturbed’’ state can

provide insight into the (computational) energy landscape

regarding stability of the prediction results. Our imple-

mentation in RNA-PAIRS generates a large pool of random

Fig. 2 Design of RNA-PAIRS network is presented in block form.

Blocks with heavier dark outlines represent the more complex

portions of the algorithm—both in terms of computational complexity

as well as algorithm design. The box for ‘‘user input’’ identifies the

current peak list input for the software, which will be extended to

include other experimental data. The direction of the arrows identifies

the ‘‘flow of logic’’ in the software. The rightmost box (that intersects

‘‘curved’’ arrows) is the portion of the software where probabilities

are updated using the ‘‘back and forth’’ (reverberating) iteration
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mutations and uses the ensemble average as an initial

estimate of probabilities for the first stage of our algorithm.

We use the nearest-neighbor thermodynamic model to

predict the minimum free-energy secondary structure of the

given RNA sequence to ‘‘seed’’ the population. Next, a

population is generated by mutating internal segments of

large loops (at least two nucleotides away from location of

predicted secondary structures) while retaining composi-

tional frequency. The resulting pool of secondary structures

is weighted by the Jaccard distance, and the resulting

weighted connectivity matrix is reported as the probability

of pairing. Our experience in practice suggests that this

approach generates a sufficiently diverse pool of possible

pairings.

Formally, given a nucleotide sequence s, we posit that

the probability of entries in the connectivity matrix A (a

weighted adjacency matrix) is represented by:

P AjSð Þ / exp
X

i

wiAiðs;AÞ
 !

ð1Þ

where wi is the weight obtained from the Jaccard distance

for the ith loop mutation arrangement, Ai is the secondary

structure connectivity matrix predicted for the ith mutation

rearrangement (described above) by using the thermody-

namic model, and the exponential function is applied to the

individual entries of the matrix. For generation of random

derangements we use an algorithm that relies on the

Mersenne Twister and Ziff’s GFSR4 algorithms, and for

deterministic secondary structure prediction we use the

RNAfold algorithm (Matlab 2010).

Probabilistic assignment of imino-protons

We describe our approach in the context of the most typical

setting where the assignment of RNA NMR resonances

relies on 2D HMQC (or HSQC) and 2D NOESY spectra. A

required initial stage in RNA-PAIRS is the automatic

alignment of peak lists across spectra in two distinct steps.

In addition to mostly systematic shifts, we have observed

that, compared to proteins, RNA 1H chemical shifts are

more prone to non-systematic shifts across NMR experi-

ments. RNA-PAIRS detects and adjusts a systematic shift

across spectra (arising, for example, from referencing

problems) by applying a local gradient search algorithm to

find an approximate offset that yields the highest correla-

tion between distinctly detectable peaks across spectra. The

cost function for optimal selection is the sum of the

Euclidean distances of the peaks with the constraint that a

match is not allowed if the distance of the cluster and the

peak is higher than the maximum shift allowed (this value

has been heuristically set to 0.1 ppm). Non-systematic

shifts present an essential challenge considering that they

may be caused by experimental conditions, sample varia-

tions, or overlapped peaks in crowded spectral regions.

The alignment and interpretation of peaks in RNA spectra

and the presence of non-systematic shifts requires a novel

approach. Unlike 3D protein NMR spectra, where the N–H

chemical shift plane provides a convenient 2D basis for

aligning shifts across experiments, a basis for aligning RNA

chemical shifts across 2D spectra is not easily available.

RNA-PAIRS addresses this challenge through the notion of

correspondence—by allowing sets of peaks to be related to

each other. The idea is implemented by applying an adaptive

k-means clustering algorithm (Macqueen 1967) to all 1H

resonances observed in NOESY spectra. The clustering

algorithm is followed next by the Hungarian bipartite

matching algorithm (Kuhn 1955) in order to find the optimal

pairing between NOESY peak clusters and 15N-HMQC

peaks. The clustering approach is further integrated into the

iterative process and is dynamically updated as assignment

probabilities evolve. Therefore, the number and membership

of clusters is a function of the number of 15N-HMQC peaks,

the number of nucleotides in the RNA assembly, the number

of base pairs determined in the last iteration of the secondary

structure algorithm, and the number of NOESY peaks in each

cluster. In order to maintain consistency, each cluster must

contain a minimum number of peaks, and if chemical shifts

from NOESY clusters remain unmatched in the corre-

sponding HMQC data, a pseudo 15N-HMQC peaks with

unknown nitrogen shift will be generated. If an HMQC peak

cannot be matched to peaks in a NOESY spectrum, the

algorithm assumes the absence of a hydrogen bond for the

given peak.

To derive assignments, RNA-PAIRS applies a pseudo-

energetic model that is derived in analogy to Gibbs mea-

sures (Georgii 1988) in biophysics and statistical

mechanics. In our pseudo-energetic model, probabilistic

variables are the assignment candidates (imino-proton

chemical shifts derived from 15N-HMQC and NOESY

spectra)—in analogy to particles in a statistical mechanical

model. The imino protons in the RNA sequence define the

possible assignment of variables—in analogy to particle

states. The probability of each configuration of assignments

s is given by the Boltzmann distribution:

ps ¼
1

Z
e�bEs Z ¼

X

s

e�bEs

where b resembles the thermodynamic variable

(determined empirically), and Z is the partition function.

ES, the energy (cost) of microstate (assignment

configuration) s, is the sum of individual and interaction

potentials:

Es ¼
X

i

UiðkðmiÞÞ þ
X

i;j

UijðkðmiÞ; kðmjÞÞ ð2Þ

J Biomol NMR (2012) 52:289–302 293

123



where k(vi) represents the state (assignment choices) of

probabilistic variable vi, Ui represents the individual

potentials, and Uij pair-wise interaction potentials.

Individual potentials are derived from statistical analysis

of chemical shifts. RNA chemical shifts deposited in

BMRB (Ulrich et al. 2008) have been utilized for the

generation of empirical probability distribution functions

for each nucleotide in multiple base pairing states. The

assignment candidates are scored in accordance with the

latest base pairing state derived from the secondary struc-

ture. The same set of empirical distributions generated

from BMRB data also are used for the purpose of updating

the predicted secondary structure for the target RNA after

the latest assignment probabilities in each iteration.

The versatility of interaction potentials makes them

suitable for taking into account evidence from NOESY

crosspeaks, as well as evidence for conformational and

assignment constraints. For example, because multiple

assignment candidates are unlikely to simultaneously be

associated to the same nucleotide, the interaction potential

for such an occurrence is set to a large value. In general,

the intricate task of modeling the pseudo-energy potential

terms is guided carefully by the subtleties of RNA

nucleotide interactions. In our design, NOESY constraints

are the most essential term in the assignment process.

Typically, the three dimensional structure of RNA dictates

whether a NOESY crosspeak should be observed or not.

In the absence of tertiary structure, the probability of

observing a NOESY crosspeak can be estimated by con-

sidering the sequence and the secondary structure of the

RNA. A non-diagonal peak in the imino region of an

NOE spectrum represents either adjacent nucleotides, base

paired nucleotides, or adjacent based-paired nucleotides.

The last category corresponds to an NOE between

nucleotides A and B, where A is based-paired with a

nucleotide adjacent to B. In considering a peak observed

at (x1, x2), any configuration s that assigns x1 and x2 to

adjacent, based-paired, or adjacent based-paired nucleo-

tides will be allocated a lower energy (higher probability)

compared to other configurations. The precise weights are

adjusted according to a combination of the latest sec-

ondary structure probability values and probability esti-

mates for observing NOE peaks in various base pairing

configurations.

Assignment of NOE peaks in RNA often faces the

challenge of spectral overlap. The presence of regular

structures, such as an A-form helix, increases the likeli-

hood of overlap by more intense neighboring crosspeaks

that may hinder detection of a crosspeak between two

resonances. Therefore, we carefully account for the inter-

action of terms involving constraints on the regular struc-

ture and NOESY crosspeaks. Intense NOESY diagonal

peaks can also readily obscure crosspeaks between reso-

nances with similar chemical shifts, obfuscating an other-

wise detectable spatial proximity from analysis. This

condition is addressed by using a neighborhood clustering

approach to relate common crosspeaks between resonances

(see (Palla et al. 2005) for a discussion of r-neighborhood

clustering). One valuable feature of this analysis is its

ability to identify potentially missing crosspeaks from

comparison of other shared and unshared crosspeaks

between two proton resonances. In addition, this analysis

enables us to heuristically relate the Euclidean distance

between base pairs with the empirical probability of

observing NOESY crosspeak for various base pair config-

urations. The result is a more accurate NOE potential term

in (2).

An important characteristic of our probabilistic model is

the flexibility gained by allowing an ensemble of solutions.

Rather than seeking a single deterministic solution, which

would necessitate the identification of the one configura-

tion that minimizes the total energy, we determine mar-

ginal probabilities for every probabilistic variable. We use

current marginal probabilities to condition the next itera-

tion until stationary probabilities are achieved. The model

relies on the implementation of ‘‘belief propagation’’

algorithms that have been studied in graphical models

(Smyth 1997; Yedidia et al. 2005). Those algorithms can

rapidly derive the exact marginals when the underlying

graph G(V,E) is a tree and has no loops. V is the set of

vertices (assignment candidates) and E is the set of edges

where there is an edge between every pair of assignment

candidates with a pair-wise potential. For loopy graphs, as

in our model, the convergence of marginals is not guar-

anteed (Tatikonda 2002), and the convergence depends on

the complexity of the graph and the consistency of the

potentials, which is normally governed by the quality of

data.

Update probabilities for secondary structure based

on Imino-proton assignments

Free energy minimizations based on thermodynamic ideas,

and more generally probabilistic approaches, have proven

to be effective in predicting secondary structures of RNA

from primary sequence (Doshi et al. 2004; Juan and Wilson

1999; Mathews 2004; Mathews et al. 2004; Mathews et al.

1999). This step provides a key extension to our probabi-

listic paradigm by adding competing and counterbalancing

‘‘pseudo energy’’ terms to represent the evidence obtained

from NMR data. An additional term, as well as reevalua-

tion of interaction rules defined earlier (2), restates the

energy (cost) of microstate (base pairing configuration) s as

follows:
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Es ¼
X

i

UiðcðqiÞÞ þ
X

i;j

UijðcðqiÞ; cðqjÞÞ

þ
X

i;j;k

UijkðcðqiÞ; cðqjÞ; cðqkÞÞ ð3Þ

The probabilistic variable qi represents nucleotide i, and

c(qi) represents its base pair choice. The allowed base pairs

in the initial phase of RNA-PAIRS consist of the most

common base pairs A–U, G–C, G–U, A–G, and U–U

(Nagaswamy et al. 2002). Evidence provided by experi-

mental data in other stages of RNA-PAIRS allows for the

expansion of the ‘‘allowed list to less common base pairs,

for example G–G base pairs’’. Base pair candidates consist

of these nucleotide pairings, plus the X-N, where N des-

ignates an additional choice for any nucleotide X as being

‘‘not base paired’’. The energy terms in RNA-PAIRS can

be conceptually classified into five categories:

(a) Thermodynamic and free energy potentials: these

potentials have been estimated from thermodynamic

parameters and nearest-neighbor model analysis for

RNA structure determination (Xia et al. 1998). The

estimates have been implemented in the form of

pairwise potential terms.

(b) NMR chemical shift evidence: imino proton and

nitrogen chemical shifts exhibit different patterns

depending on the base pairing status of the nucleotide.

As mentioned earlier we have generated empirical

probability distribution functions for each nucleotide

in multiple base pairing states. Given the latest status

of chemical shift assignment and by applying the

Bayes rule, RNA-PAIRS derives the probability of

each base pairing state and converts it to first-order

potential terms in (3) by utilizing the Boltzmann

distribution.

(c) NOE evidence: non-diagonal NOE peaks are evidence

of adjacent, base paired, or adjacent base paired

nucleotides. This form of NMR evidence has been

added to our energy model as pairwise pseudo-energy

potentials. Given the latest probabilistic assignment of

NOE peaks, the base paired and neighboring base

paired candidates are separated, and their potential

terms are added accordingly. These potentials were

derived from our study of the frequency of observa-

tion of NOE peaks for various base pairing

configurations.

(d) Secondary structure constraints: these terms in the

energy function are designed to make certain config-

urations significantly less likely. Examples of these

configurations include a stem loop that has less than

three base pairs, or ‘‘twisted’’ base pairing, where (i,

j) is one base pair index, (k, l) is another base pair

index, and we have the additional conditions: i [ k,

l \ j, |i - k| \ 4, |l - j| \ 4. A further constraint is

to exclude any configuration in which a nucleotide

i chooses nucleotide j as its base pair nucleotide while

j chooses a nucleotide other than i. The implemen-

tation of constraints takes the form of pairwise as well

as triplet-wise potentials with ‘‘infinite’’ energy for

any ‘‘excluded’’ configuration.

(e) Initial secondary structure prediction: any initial

secondary structure prediction provided by the user

(optional) is converted to pseudo-energy first order

potentials according to the Boltzmann distribution

model.

Key computational extensions to promote robust

convergence

The computational inference network for RNA-PAIRS

utilizes key extensions that are unique to our model.

Examination of (2) and (3) reveals that the reverberation

steps use asymmetric weights. The novel asymmetric

approach enables stronger influence of experimental data,

while allowing for strong accumulated derived evidence to

be dominant when necessary. Unique to our computational

approach is the addition of a combinatorial marginal

evaluation step. Ordinarily, in order to derive the margin-

als, RNA-PAIRS uses a multistep iterative approach that

utilizes dynamic graph topology, energy rescaling at each

iteration step, and a variation of the basic belief propaga-

tion algorithm (Huang and Darwiche 1996). After each

iteration step involving secondary structure determination

and the assignment process, some probabilistic variables

and their marginals may reach an effective ‘‘fixed state’’—

one in which the predicted probabilities change only within

a small threshold. This ‘‘fixed state’’ is intuitively inter-

preted to mean that these variables have reached a state of

reduced complexity and that the system is one step closer

to the ‘‘ground state’’—representing a fully consistent

outcome. In the case of RNA assignments, the absence of

sharp pseudo-energy differences that can separate assign-

ment configurations causes the belief propagation algo-

rithm to show non-convergent behavior in certain

instances. This behavior can be detected by running the

iteration a few cycles past the algorithmic stationary state

and checking for a drift or switch in probability values. At

the same time, running the iteration longer pinpoints the

areas of probability drift or instability. The use of dynamic

topology in the course of the first iteration round is not

sufficient to address this impediment because the appear-

ance of non-convergence is likely to become prominent

after topology has stabilized. To address this challenge, we

consider additional modifications to the topology based on
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a posteriori results. Since we are able to detect unstable

assignment regions, we select sufficiently large portions of

non-convergence regions (while remaining within compu-

tationally tractable bounds), and perform combinatorial

computation. In contrast to belief propagation, which is an

approximation and is not guaranteed to converge, our

combinatorial approach is exact. Subsequently, after per-

forming exact computation, we eliminate conditional

dependencies with ‘‘near zero’’ probability values from the

full graph by removing the corresponding edges—thereby

modifying the topology of the graph based on exact local

computations. Our results show that the topological mod-

ifications provide excellent improvements in accuracy

and convergence, and are therefore key to the successful

assignment results.

Validation of RNA-PAIRS

Several sources of RNA NMR data were utilized (Table 1)

in the development and validation of the RNA-PAIRS

algorithm. We had access to experimental NMR data

sets from three previously published RNA structures

(Table 1A). We also obtained data sets from several cur-

rent projects at the National Magnetic Resonance Facility

at Madison (Table 1B), allowing for the unique opportu-

nity to interact with researchers intimately familiar with

Table 1 Data used for validation of RNA-PAIRS represent a sample of RNA molecules, fold topologies, and length (residues)

RNA Name Residues Source description # Structures Notes References

(A.) Data sets from previously published structures

2KF0 24 U6 snRNA internal stem-loop 10 H, B, W, R Huppler et al. 2002

1XHP 32 U6 snRNA extended internal stem-loop 10 H, B, W, R Sashital et al. 2004

2JTP 34 SIV frameshift stem-loop 20 H, I, W, R Marcheschi et al. 2007

(B.) Data sets from currently unpublished structures

17901 30 U6 snRNA 50 stem-loop 0 H, W, R B1

17921 47 GAGA tetraloop receptor variant 0 H, B, W, R B2

17961 111 U2/U6 snRNA complex 0 M, B, I, W, R B3

(C.) Simulated data sets from structures deposited in PDB

1FHK 14 16S rRNA 690-loop 15 H, W, S Morosyuk et al. 2001

2KOC 14 UUCG tetraloop 20 H, W, R Nozinovic et al. 2010

1Z30 18 Bovine enterovirus 1 cloverleaf 1 D-loop 15 H, W, R Ihle et al. 2005

2O33 20 U2 snRNA stem I 20 H, W, S Sashital et al. 2007

2RPT 20 Thymidylate synthase binding site 10 H, I, W, S Tavares et al. 2009

1PJY 22 HIV-1 frameshift inducing stem-loop 20 H, W, R Staple and Butcher 2003

2QH2 24 Telomerase RNA CR7 domain 20 H, B, W, R Theimer et al. 2007

2L5Z 26 A730 loop of the neurospora VS ribozyme 21 H, B, W, R Desjardins et al. 2011

1A3 M 27 16S rRNA A-site 20 H, I, W, S Fourmy et al. 1998

1YG4 28 ScYLV RNA pseudoknot 1 P, B, W, R Cornish et al. 2005

2JWV 29 High affinity anti-NFkB RNA Aptamer 10 H, I, W, R Reiter et al. 2008

2K5Z 29 Duck HBV apical stem-loop 10 H, B, I, W, S Ampt et al. 2009

2K63 29 Group II intron 50-splice site 20 H, W, R Kruschel and Sigel 2009

1LDZ 30 Lead-dependent ribozyme 25 H, I, W, R Hoogstraten et al. 1998

1NA2 30 Telomerase RNA p2b hairpin 18 H, W, R Theimer et al. 2003

2L3E 35 P2a-J2a/b-P2b of human telomerase RNA 20 H, I, W, R Zhang et al. 2010

2L1V 36 50UTR preQ1 riboswitch 20 P, B, I, W, R Kang et al. 2009

1YMO 47 50 hTR telomerase pseudoknot 20 P, B, W, R Theimer et al. 2005

1P5O 77 HCV IRES domain II 12 H, B, I, W, S Lukavsky et al. 2003

1S9S 101 Moloney murine leukemia virus core 20 M, B, I, W, S D’Souza et al. 2004

Notes identify structural features (H: hairpin, M: multiple hairpin domains, P: pseudoknot, B: bulge loops, I: internal loops, W: wobble base-

pairs), and sources (R: experimentally observed chemical shifts, S: simulated chemical shifts). #Structures is the count of NMR models.

References are provided in the last column. References B1, B2, and B3 identify BRMB entry IDs 17901, 17921, and 17961, respectively. For

data sets with published structures, the secondary structures (the sum of base pairings: Watson–Crick, mismatch or wobble), and their motifs

(notes in Tables 1, 2, 3), were determined by identifying potential inter-base hydrogen bonds by distance and angle of donor and acceptor heavy

atoms
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these RNAs. An additional 20 data sets were derived by

using PDB and BMRB data sources (Table 1C). One subset

of the additional data combined information in the PDB

files (structure data) with BMRB data (assigned chemical

shifts) to reconstruct peak lists (Table 1C—noted ‘‘R’’)

(21). In our peaklist reconstructions, NOESY crosspeaks

were predicted for inter-proton distance measurements of

\5.5 Å, and HMQC crosspeaks predicted for imino pro-

tons involved in base pairing. A second subset was

obtained by simulating peak lists from PDB coordinates in

the absence of assigned chemical shifts (Table 1C—noted

‘‘S’’). For this subset, proton and nitrogen chemical shift

predictions were made based on statistical distributions

available from the BMRB (21) and heuristic effects from

base pairing and neighboring residue identity (Cromsigt

et al. 2001; Fürtig et al. 2003). The latter subset enabled us

to test several larger RNAs, or more complex structural

motifs that would have otherwise been unavailable. For all

reconstructed peaklists, spurious peaks were added, ran-

dom chemical shift variability was introduced, and random

peaks were removed in order to approximate errors

observed in real data. Assignments and secondary structure

predictions were evaluated against known results, when-

ever available, or crosschecked against human expert

assignments. All final results were corroborated with

spectra, when available.

The final test data set comprised 26 peaklist pairs

(NOESY and HMQC) for RNAs ranging in size from 14 to

111 residues. The motifs represented included A-form

helices, pseudoknots, hairpin-, bulge- and internal-loops,

metal binding sites, and many different examples of base

pairing and stacking. Also represented were large, multi-

domain structures such as 1S9S (D’Souza et al. 2004) and

BMRB ID 17961. Test data sets were submitted to the web

server (http://pine.nmrfam.wisc.edu/RNA/). Imino reso-

nance assignment probability and secondary structure

results were returned via e-mail. Assignment probabilities

were crosschecked against original manual assignments

and, whenever possible, corroborated with real spectra.

Results

The performance of RNA-PAIRS for the imino proton

assignment and secondary structure determination for the

case of six experimental RNA data sets and thirteen data

sets reconstructed from experimentally determined chem-

ical shifts are summarized in Table 2. Additionally, visual

presentation of the results for experimental data sets has

been presented in the Supplementary Information (Figure

S1). The seven simulated data sets from predicted chemical

shifts are presented separately in Table 3. An advantage of

the probabilistic assignment in RNA-PAIRS is the

additional reporting of possible alternative assignments in

addition to reporting the assignment results based on the

choice with maximum probability. We also report the

assignment accuracy when only the top three reported

candidate assignments are considered. For moderately

sized RNA molecules (i.e., \40 nucleotides), the percent-

age of correct assignments is typically high—as is the

number of correct base pairing predictions. Aside from the

size of the RNA or number of imino protons considered,

resonance overlap in the peak lists contributed to degen-

eracy among potential assignment probabilities, thereby

hindering unique assignments. RNA-PAIRS’s ability to

select multiple assignments and score them in the output

report is advantageous because a correct unique assignment

in the absence of additional data is likely to be unattainable

in this case.

The results obtained for real data sets were in good

agreement with those from simulated data sets (compare

Tables 2A, B with Tables 2C, 3), with a few notable

exceptions. Close inspection of NOESY spectra from 2JTP

and BMRB ID 17921 revealed two imino resonances in

each that could reasonably be assigned to alternate con-

nectivities. Our simulated data sets did not incorporate a

scenario that generated ambiguous resonances, but the

observation suggests that RNA-PAIRS properly addressed

an equivocal assignment. This supposition is supported by

the increased accuracy of similar RNA data sets from

simulation. The unusual imino chemical shifts in the

2QH2, 2L5Z and 2L3E data sets (Table 2C), despite being

outside the chemical shift distributions considered by our

algorithm, were ultimately assigned with 100% accuracy

because of our focus on connectivity networks rather than

chemical shifts. The lack of outlier chemical shifts for the

subset of simulated data sets shown in Table 3, for which

chemical shifts were predicted from the same distributions

used by our algorithm, promoted higher accuracies for

comparable RNAs. However, Table 3 makes apparent the

limits of the current form of our algorithm in relation to the

number of residues in the RNA, a trend seen across all data

sets.

The incorporation of the results from our peak list

clustering analysis provided additional evidence for the

determination of assignment pseudo-energies, resulting in

fewer ambiguities and larger assignment probabilities for

most data sets. For one data set in particular, 2KF0

(Table 2A), the assignment probabilities of two imino

protons with similar chemical shifts, on physically adjacent

residues, were dramatically improved. Further analysis

revealed that the prediction (with high likelihood) of a

missing crosspeak (overlapped by intense diagonal peaks)

between the two imino protons was a key source for the

improvement. For another real data set, BMRB ID 17961

(Table 2B), one of our most challenging given its size and
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complexity, inclusion of peak list clustering improved

accuracies for ‘‘Best Choice’’ from 13 to 35%, and ‘‘Top

Three Choices’’ from 13 to 61%. Moreover, the time

required to complete the assignment algorithm with clus-

tering was reduced by more than 75%; indicating less

ambiguity was introduced into the probabilistic engine.

The percentage of correctly predicted base pairs in the

secondary structure does not show discernable correla-

tions with either the size of the molecule or number of

observed imino protons. Secondary structure prediction

accuracies were largely unaffected by false input sec-

ondary structures. In the case of RNAs 2KF0 and 1XHP,

Table 2 RNA-PAIRS Assignment and Secondary Structure Accuracy

RNA

name

Residues Observable

iminos

%

Unassigned

% Correct best

choice

% Correct assignment in

top 3

% Correct

base-pair

Time

(s)

Notes

(A.) Data sets from previously published structures

2KF0 24 9 0 100 100 92 38.16 H, B, W

1XHP 32 13 0 100 100 88 11.12 H, B, W

2JTP 34 14 0 79 93 100 54.13 H, I, W

(B.) Data sets from currently unpublished structures

17901 30 12 0 100 100 100 7.1 H, W

17921 47 24 0 71 79 100 67.8 H, B, W

17961 111 23 0 35 61 96 782.3 M, B, I, W

(C.) Simulated data sets from deposited structures

2KOC 14 7 0 100 100 86 10.1 H, W

1Z30 18 8 0 100 100 100 9 H, W

1PJY 22 9 0 100 100 91 24.1 H, W

2QH2 24 10 0 90 100 92 21.3 H, B, W, U

2L5Z 26 10 0 90 100 100 19.6 H, B, W, U

1YG4 28 8 25 38 88 24 40.8 P, B, W

2K63 29 10 0 100 100 100 30.9 H, W

2JWV 29 8 0 88 100 79 32.1 H, I, W

1NA2 30 14 0 86 86 87 34.2 H, W

1LDZ 30 11 0 100 100 93 39.7 H, I, W

2L3E 35 13 0 92 100 89 57.2 H, I, W, U

2L1V 36 7 0 86 86 45 42.7 P, B, I, W

1YMO 47 20 0 20 40 81 235.2 P, B, W, U

Notes indicate structural and data set features (H = hairpin, M = multiple hairpin domains, B = bulge loops, I = internal loops, W = wobble

base-pairs, U = unusual chemical shifts observed). 17901, 17921, and 17961 are BMRB IDs for deposited chemical shifts. The BMRB entries

referenced are currently in the BMRB release queue. They are expected to become publicly available shortly

Table 3 RNA-PAIRS

assignment and secondary

structure accuracy for simulated

chemical shifts

Notes indicate structural and

data set features as in Table 2

RNA

name

Residues Observable

iminos

%

Unassigned

%

Correct

best choice

% Correct

assignment

in

top 3

%

Correct

base-

pair

Time

(s)

Notes

1FHK 14 6 0 100 100 100 12.8 H, W

2O33 20 8 0 100 100 100 17.7 H, W

2RPT 20 7 0 100 100 100 21.6 H, I, W

2KD8 22 11 0 100 100 100 21.6 H, W

1A3 M 27 11 0 100 100 93 34.6 H, I, W

2K5Z 29 14 0 100 100 100 34.5 H, B, I, W

1P5O 77 28 0 46 76 86 342.8 H, B, I, W

1S9S 101 43 2 23 49 65 914.9 M, B, I, W
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for which the assignment percentage exceeded the correct

base pair percentage, AC wobble pairs played a key role.

The absence of imino proton involvement in these base

pairs left RNA-PAIRS with little useful experimental

evidence for corroborating or adjusting base pairing pre-

dictions—a consistent and expected behavior. The pres-

ence of uncommon base pairs in the hairpin loops of

RNAs 2KOC and 1PJY may explain why the chemical

shifts did not provide strong corroboration for ‘‘base

pairing’’. Overall, the observations indicate that RNA-

PAIRS can successfully validate and correct secondary

structure in a manner that is consistent with input NMR

peaklists.

The most favorable results were obtained for RNAs with

a single hairpin secondary structure (Table 1). The largest

hairpin, 1P5O, showed modest assignment accuracy,

despite containing multiple internal bulges and loops. Two

structures that involved multiple hairpins folding within the

same RNA strand, 1S9S and BMR17961, were less accu-

rately assigned. The larger size of these RNA molecules

and the potential of additional resonance overlap is partly

responsible for lowered accuracies, but our analysis indi-

cates that the competing folds generated from the initial

prediction of secondary structure also play an important

role.

We evaluated the assignment of pseudoknot structures

by including three data sets, 1YG4, 1YMO, and 2L1V. The

abundance of canonical base pairings and stacking in the

2L1V pseudoknot structure provided for good accuracy in

assignment—albeit with lower secondary structure confi-

dence. The results obtained for 1YG4 and 1YMO showed

low assignment accuracy, with correct assignments coming

mostly from helical regions involving Watson–Crick pair-

ings. Detailed knowledge about pairing in pseudoknots

improves the results, suggesting that the current form of the

secondary structure prediction algorithm in RNA-PAIRS

must be improved further to account for non-helical tertiary

interactions and for more than one pairing interaction for

each residue.

The completion time for the RNA-PAIRS automated

assignment algorithm ranges from seconds to minutes

(Tables 2, 3). These timings were obtained when running

the algorithm on a Dell Optiplex 755 desktop computer

with an Intel Core2 Duo processor running at 2.33 GHz,

and 4 GB of RAM memory. Faster completion times were

achieved when data sets were submitted to our multi-pro-

cessor web-server, although variable rates of Internet traffic

and e-mail server updates accounted the majority of total

time between submission and return of results. Nonethe-

less, these times represent a reduction in the hours or days

currently required for RNA imino proton resonance

assignment.

RNA-PAIRS is available for public use through a fully

automated web-server at http://pine.nmrfam.wisc.edu/

RNA/. The server accepts 1H,15N-HMQC (or HSQC) and

NOESY peak lists and the sequence of the RNA, and

provides the complete probabilistic assignment of imino

protons and the secondary structure of the RNA in a pro-

cess that normally takes less than a minute. The server is

fully automated, and no manual intervention or parameter

setting is required.

Discussion

Protein structure determination by NMR has benefited from

a variety of automated software tools (Shen et al. 2009;

Shen and Bax 2010; Berjanskii et al. 2009; Bahrami et al.

2009; Eghbalnia et al. 2005b), but robust NMR chemical

shift assignment tools have yet to be developed for RNA.

We have implemented a method, as yet unknown in the

literature, for the automated assignment of RNA imino

protons and validation of secondary structure from NMR

data sets. RNA-PAIRS has been successfully deployed as a

web-based computational platform available for public use.

Ideally, it is valuable to validate results on as large of a

data set as possible since additional data sets will help

refine our pseudo-energy model and NOESY cluster anal-

ysis. Future submissions to the already active web-server

and subsequent user feedback will provide an excellent

source to guide the refinement of our algorithms, the

improvement of prediction accuracies, and our planned

extensions.

We broadened our understanding of the precise role of

experimental observations and chemical shift dispersion in

RNA data sets, by performing controlled tests through the

use of simulated NOESY and HMQC peaklists from RNA

structures deposited in the PDB. Given the dearth of RNA

NMR data in repositories such as the BMRB, this approach

proved useful in allowing us to consider larger RNAs and

more structural motifs. Several relatively small, simple

hairpins were also simulated for better comparison with

experimental data sets. In our simulations we noted that

NOE connectivity plays a dominant role for RNA reso-

nance assignments—unlike in proteins where the precise

chemical shifts of nuclei play a more important role in

backbone assignments. Comparison of the similar results

for the real and simulated data sets from experimentally

determined chemical shifts (Table 2A, B vs. C, respec-

tively) validated our premise regarding the importance of

NOE connectivity data. The lower performance observed

in cases of poorly predicted secondary structure further

confirmed the usefulness of our strategy of initiating

assignments with a priori predictions of secondary
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structure. Simulation of data sets also has allowed us to

identify several unique motifs with unusual chemical shifts

that can be profiled and incorporated into future versions of

our method.

Our novel attempt at NOESY peaklist clustering anal-

ysis has, as described, led to considerable improvements in

our automated assignment algorithm. Given that this

analysis is based upon heuristic rules derived from

knowledge of RNA structure and our validation data sets, it

is expected that our algorithm will be refined and further

improved with more data sets submitted to our web server

from the RNA structure community. Beyond this, our

clustering analysis has yielded more subtle insights into

data structure networks that have the potential to refine

methods for protein automated assignment and biomolec-

ular structure calculation/validation, and are currently

being investigated.

With RNA-PAIRS we plan to solicit and build an

expanded library of real data sets in order to help develop

specific enhancements and to guide future developments in

the field. Specifically, we foresee including the ability to

recognize (possibly predict) an expanded array of non-

Watson–Crick base pairs (including G–G) and their

geometries, tertiary base pairing, such as in pseudoknots,

kissing loops and dimers, and to include the ability to parse

data from multiple RNA chains. The incorporation of a

secondary structure partition function should enhance our

method with the ability to consider and identify alternative

conformations supported by competing NOESY connec-

tivities. With additional NMR experimental data, for

example, from submissions to our web services, we expect

to establish a better knowledgebase for hydrogen bonding

patterns of non-W–C pairs. Moreover, the HNN-COSY

experiment can be incorporated in order to provides the

nitrogen chemical shifts of the imino hydrogen-bond

accepting residues. This can be used to identify the paired

residues according to known nitrogen chemical shift dis-

tributions. Residual dipolar coupling (RDC) values for

imino proton-nitrogen pairs have been shown to follow a

periodic trend in A-form helices (Walsh and Wang, J Mag

Reson 2005, 152–162), and could be incorporated into our

algorithm as additional sequential, pairing and structural

evidence. While additional data sets provide richer infor-

mation, it is useful to allow the 1H–15N HMQC peak list,

and other heteronuclear experiments, to be optional inputs

in order to retain flexibility—for example, to avoid the cost

of synthesis for isotopically labeled RNA.

RNA-PAIRS is a first step in our broader effort to

automate the full assignment and structure determination of

RNA molecules by NMR. As complements of new algo-

rithms and methods are implemented, we expect to see

additional reductions in the disparity between automated

assignment methods for proteins and RNA. The imino

atom assignments and corroborated secondary structure

obtained from RNA-PAIRS analysis are a primary requisite

for further interpretation of NMR data for helical and non-

helical regions alike. Our planned enhancements to RNA-

PAIRS, along with additional steps incorporating non-

exchangeable NMR data sets, are expected to improve and

expedite the process of RNA assignment and structure

determination.
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